Semester Examinations-July 2023

Programme: M.Sc. Biochemistry

Session: 2023

Semester:

3

Max. Time: 3 Hours

Course Title: Genomics and Proteomics

Max. Marks: 70

Course Code: SIAS BC 13 01 C 3104

Instructions:

- 1. Question no. 1 has 7 parts and students need to answer any 4. Each part carries $3^{1}/2$ Marks.
- 2. Question no. 2 to 5 have 3 parts and student need to answer any 2 parts of each question. Each part carries 7 marks.

Q 1.

(4X3.5=14)

- a) Write short notes on performing site directed mutagenesis in laboratory
- b) Write short notes on gene over expression and gene complementation
- c) What are the two prominent promiscuous enzymes used for proximity labelling and their mode of action
- d) Write short notes on gene editing by homologous recombination
- e) Write about role of restriction enzymes in gene cloning
- f) Write about the essential components of plasmids with drawing?
- g) Write basic steps involve in the Human genome sequence

Q 2.

(2X7=14)

- a) What is CRISPR? Explain the mechanism of CRISPR based gene manipulation techniques.
- b) Explain Yeast-2-Hybrid system in detail.
- c) Write about gene cloning methods.

Q3.

(2X7=14)

- a) What is centrifugation? Describe various centrifugation techniques used for separation of biomolecules.
- b) Give a detailed account on 2-D gel electrophoresis. Also write its application in proteomics and biomarker discovery.
- c) Explain working, principle and application of mass spectrometry.

Q4.

(2X7=14)

- a) Describe the essential steps involved in whole genome sequencing (WGS).
- b) Discuss any ONE method of high-throughput cloning and expression system.
- c) Write in detail about phage display.

Q 5.

- a) Write the principle and methodology involved in analyzing the proteins by LC-MS.
- b) What are biomarkers? Write down the classification of biomarkers with examples.
- c) Write about protein fragment complementation.

THE PERSON NAMED IN COLUMN 2 I

Term End Examinations June 2023

Programme:

M.Sc. Biochemistry

Session: 2022-23

Semester:

Ш

Max. Time: 3 Hours

Course Title: Recombinant DNA Technology

Max. Marks: 70

Course Code: SIAS BC 12 03 C 4004

Instructions:

1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1.

(4X3.5=14)

- a) Write a short note on Bacteriophage.
- b) Explain the role of ligases in recombinant DNA technology.
- c) What are phagemids? Draw its structure.
- d) Explain in brief about next generation sequencing (NGS)-polymerase chain reaction.
- e) What are vectors? Describe their essential features.
- f) What is the principle of His tagging of proteins?
- g) How GFP helps in understanding of expression of genes?

Q 2.

(2X7=14)

- a) What are restriction endonucleases? Explain by giving suitable examples.
- b) Explain the role of plasmids by giving suitable examples.
- c) Write principle and procedure of Agarose gel electrophoresis.

Q3.

(2X7=14)

- a) Explain the structure and function of PAC, YAC and BAC.
- b) Explain Maxam and Gilberts chemical and Sangers chain termination method.
- c) Discuss the principal and application of PCR.

Q4.

(2X7=14)

- a) What do you understand by gene expression? What's the usefulness of quantitative real time PCR analysis and microarray analysis?
- b) Describe the principle of steps of preparation and applications of cDNA library?
- c) What are the differences in genomic library, cDNA library and substrative library?

Q 5.

- a) What is operon concept? Explain one in detail by giving suitable example.
- b) What is fusion protein? Give an example to show how protein are tags used in purification or localization of the target protein.
- c) Describe how recombinant DNA technology can benefit to industry or Agriculture.

Reappear Examinations, July 2023

Programme: M. Sc. Biochemistry

Semester: 1

Course Title: Cell and Molecular Biology Max. Time: 3 Hour

Course Code: SIAS BC 11 02 C 3104 Max. Marks: 70

Instructions:

- 1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks.
- 2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Attempt any four questions

(4X3.5=14)

- (i) Define codons? Explain various characteristics of codons.
- (ii) Receptor mediated endocytosis
- (iii) Replication termination
- (iv) Differentiate between different types of recombination
- (v) What are promoter sequences? How these sequences are important for RNA synthesis?
- (vi) Translation termination in prokaryotes
- (vii) Define protein sorting

Q 2. Explain following:

(7x2=14)

- (i) Define membrane sorting. Also explain the process of gycosylation.
- (ii) Structure and functions of plasma membrane.
- (iii) Define endocytosis. Explain different types of endocytosis and their advantages.

Q 3. Give a detailed account on:

(7x2=14)

- (i) Various components of cytoskeleton elements and their advantages.
- (ii) Describe various components and interactions of extracellular matrix for maintaining cellular structural integrity of a cell.
- (iii) Microtubule based movement.

Q 4. Describe following:

(7x2=14)

- (i) Process of DNA replication in eukaryotes by mentioning the role of different enzymes.
- (ii) Define recombination. Differentiate between homologous and site-specific recombination

(iii) Who firstly invented the DNA act as a genetic material and explain its experimental evidence using well labeled diagram? Also explain the mechanism of regulation of DNA regulation.

Q 5. Explain following:

(7x2=14)

- (i) Why one amino acid is encoded by more than one codon? Describe the process of activation of amino acid for the initiation of translation.
- (ii) Process of RNA synthesis in eukaryotes.
- (iii) Mechanism of translation termination in prokaryotes. Also describe the role of guanine nucleotide in control of translation.

Term End Examinations July-2023

Programme: M.Sc. Biochemistry

Session: 2022-23

Semester: Second

Max. Time: 3 Hours

Course Title: Cell Culture technology

Max. Marks: 70

Course Code: SIAS BC 12 01 DCEC 3104

Instructions:

1. Question no. I has seven parts and students are required to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Attempt any four questions

(4X3.5=14)

- (a) Superovulation
- (b) Artificial seed production
- (c) Cryopreservation
- (d) Micropropagation
- (e) Embryo rescue
- (f) Types of culture processes
- (g) Ti plasmid

Q 2. Explain following

- (a) Define scale up. Describe its various approaches by mentioning their merits and demerits.
- (b) Explain methods of somatic cell fusion. Also discuss the different steps involved in monolyer subculture.
- (c) Define cell lines. Differentiate between finite and continuous cell lines with examples.

 Also discuss the criteria for the selection of cell lines.

Q 3. Give a detailed account on following

(2X7=14)

- (a) Describe various approaches of in vitro fertilization and embryo transfer in animals.
- (b) What are stem cells? Describe the methods of stem cell culturing and characterization.
- (c) Define cell cloning. Explain various strategies of cell cloning.

Q 4. Describe following

(2X7=14)

- (a) Process of embryo culture and its applications
- (b) Process of plant regeneration
- (c) Differentiate between callus culture and suspension culture. Also write the functions of essential components used for establishing a cell culture.

Q 5. Explain following

- (a) Discuss the various approaches of generation of exclusive male plants and homozygous cell lines. Also discuss various approaches of selection of homozygous plants and significance of production of homozygous plants.
- (b) Describe the process of inducing genetic variation in *in vitro* cultured cells. Why genetic variations are induced in *in vitro* cultured cells?
- (c) Discuss various steps of somatic hybridization based on protoplast and its application.

Re-appear Examinations-July 2023

Programme: M.Sc. Biochemistry

Session: 2022-23
Max. Time: 3 Hours

Semester: 1st

Max. Marks: 70

Course Title: Analytical Biochemistry Course Code: SIAS BC 11 03 C 3104

Instructions:

1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Attempt any FOUR of the following.

(4X3.5=14)

- a) Define the mirror image rule of fluorescence.
- b) How does the wavelength affect resolution?
- c) What is Beer-Lambert's Law?
- d) What is the function of Grating in a Spectrophotometer.
- e) Write the equation related to relative centrifugal force (rcf) and revolution per minute (rpm)
- f) Name of the two dyes used in agarose gel electrophoresis.
- g) What are Bed volume and Void volume?

Q 2. Attempt any TWO of the following.

(2X7=14)

- a) Draw a ray diagram of the Phase contrast microscope. How does a Phase contrast Microscope acquire a contrast image?
- b) What is SEM? How does SEM form a three-dimensional (3D) image?
- c) Define Lens aberration and its types.

Q3. Attempt any TWO of the following.

(2X7=14)

- a) How does SDS-PAGE gel prepare? How do we visualize protein samples on SDS-PAGE?
- b) Write Agarose gel electrophoresis for the separation of DNA samples.
- c) What are gradient centrifugation and its types?

Q 4. Attempt any TWO of the following

(2X7=14)

- a) Define Chromatography. How does ion exchange chromatography work?
- b) Write short notes on, Void volume vs Bed Volume, Eluent vs Eluate, Retention factor, and retention time.
- c) Diagrammatically discuss the major parts of HPLC and their role in purification.

Q 5. Attempt any TWO of the following.

- a) What does stand for ELISA? Discuss any two types of ELISA.
- b) Draw a ray diagram of a double-beam Spectrophotometer. Discuss the major component of the spectrophotometer.
- c) What is mass spectroscopy. How does MALDI help in mass analysis?

THE REPORT OF THE PERSON AND THE PER

End Semester Examinations - July 2023

Programme: M.Sc Biochemistry

Session: 2022-24

Semester:

Ι

Max. Time: 3 Hours

Max. Marks: 70

Course Title: Protein Biochemistry

Course Code: SIAS BC 11 04 C 3104

Instructions:

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks.

01.

(4X3.5=14)

- a) Explain the hierarchical pathway of protein folding.
- b) Explain the circular proteins with an example.
- c) What is peptide bond, how it is formed, write the reaction.
- d) Why geometry is important for biological molecules.
- e) Write about Anfinsen's experiment to demonstrate protein refolding.
- f) Explain the varieties of lipid motions which creates disorder in the fluid lipd bilayer.
- g) What are the major classes of membrane proteins, how do they interact with membrane lipids.

Q 2.

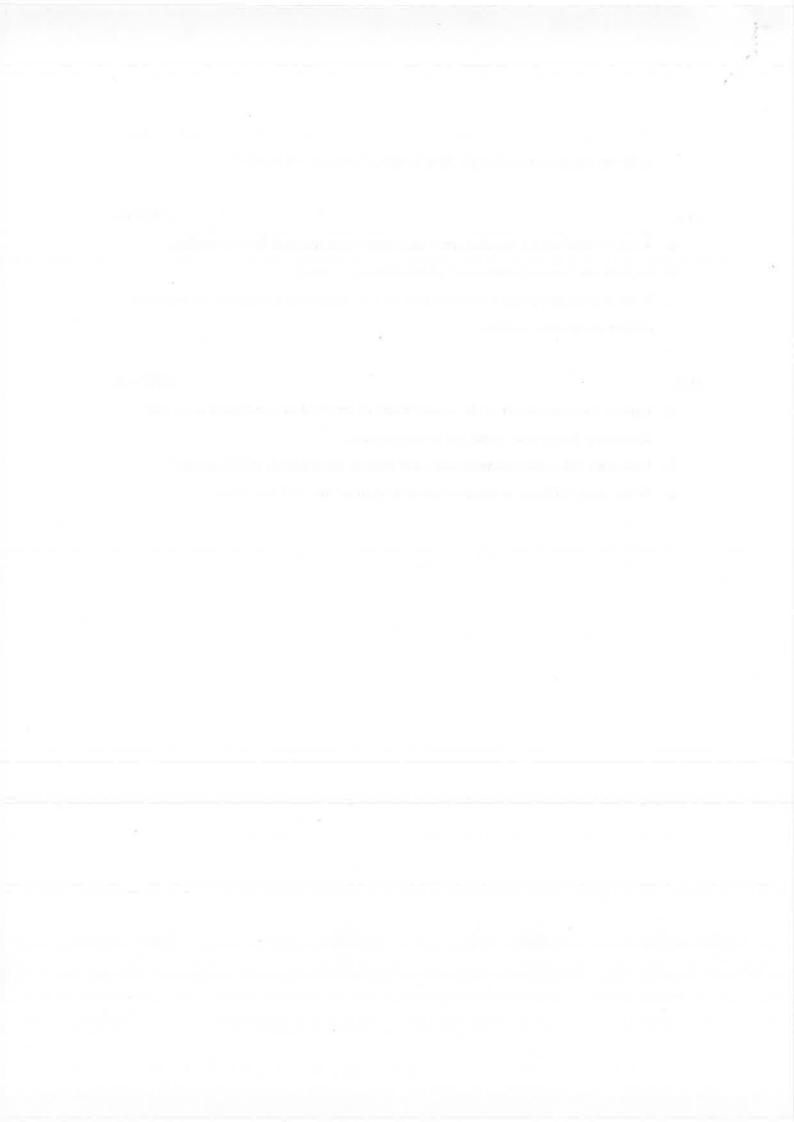
(2X7=14)

- a) What are torsion angles, Explain Ramachandran plot with torsion angles related to alpha helix, triple helix and beta sheets.
- b) Explain in detail about the different non-covalent interactions between molecules and compare their strength.
- c) Write about the classification of amino acids based on their properties.

Q3.

- a) Explain in detail about the secondary structure of proteins.
- b) Explain amino acid propensities for the secondary structure of proteins.

. .


c) What are the tertiary and quaternary structure of proteins, What is a domain, what different interactions maintain these levels of structure of protein?

Q 4. (2X7=14)

- a) Write in detail about the chaperone and chaperonin assisted Protein folding.
- b) Explain the thermodynamics of protein folding in detail.
- c) What is protein melting curve and how we can determine the fraction of unfolded protein using these curves.

Q 5. (2X7=14)

- a) Explain the mechanism of the development of amyloidoses and prion associated diseases in detail with respect to protein folding.
- b) How does Mass spectrometry work and explain the methods of ionization?
- c) Write about different methods of protein engineering with examples.

Third Semester Re-Appear Examination Examinations June 2023

Programme: M.Sc. Biochemistry Session: 2022-23

Semester: III Max. Time: 3 Hours

Course Title: Plant Biochemistry Max. Marks: 70

Course Code: SIAS BC 13 08 C 4004

Instructions:

1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and a half Marks.

2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Answers ANY FOUR questions.

(4X3.5=14)

- a) Photosystem-I.
- b) Plasmodesmata.
- c) Write down differences among C3, and C4 metabolism.
- d) Write a note on Nodulins.
- e) Non cyclic phosphorylation.
- f) Define stress and its coping system in plants.
- g) Write a short note on terpenoids.

Q 2. (2X7=14)

- a) What are different photosynthetic molecules involved in photosynthesis? describe their properties.
- b) Write note on different types of light reactions in photosynthesis.
- c) Write down about different variation of C4 cycle.

Q3. (2X7=14)

- a) Describe Biochemistry of nitrogen fixation, also mention nitrogenase enzyme complex.
- b) Describe various steps of nodulation, bacterial attachment, and infection in legumes by symbiotic bacteria.
- c) Write in details about Ammonia assimilation and transamination in plants.

Q 4. (2X7=14)

- a) Describe the various biological roles of plant phenolics.
- b) Describe different classes of flavonoids and their functions.
- c) Write about different benzoic acid derivatives and their mechanism of function.

Q 5. (2X7=14)

- a) Describe the response of plants towards insects and also mention different resistance strategies.
- b) Write in details about mechanisms of resistance against abiotic stresses.
- c) What are ROS? Write down their damaging role in plants.

Term End Examinations June 2023

Programme: M.Sc. Biochemistry

Session: 2022-23
Max. Time: 3 Hours

Semester: 2nd

Course Title: Enzymology and Enzyme Technology

Max. Time: 3 Hour

Course Code: SIAS BC 12 01 C 4004

Instructions:

1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Attempt any FOUR of the following.

(4X3.5=14)

- a) Comment on proximity, orientation effect, Strain, and distortion theory.
- b) Write the Lineweaver-Burk (LB) equation and also draw its (LB) plot.
- c) How does cofactor concentration affect enzyme activity (v_0)? Represent this relationship diagrammatically.
- d) Mark the difference between non-competitive and mixed inhibition.
- e) Why do allosteric enzymes not follow the Michalis- Mention equation?
- f) Comment on SGPT and SGOT.
- g) State the condition at which Km equals to Kd.

Q 2. Attempt any TWO of the following.

(2X7=14)

- a) Discuss the classification of enzymes.
- b) Define enzyme activity, specificity activity, turnover number (Kcat), and Relevance of Rate limiting step of a reaction.
- c) Define Apoenzyme, and Holoenzyme. Despite of equilibrium state, what other factors remain unchanged in the enzymatic catalysis?

Q3. Attempt any TWO of the following.

(2X7=14)

- a) Derive the Michaelis-Menten equation. What are the merits and demerits of the Michaelis-Menten equation?
- b) Discuss the temperature-dependent activity of an enzyme. How will you assess the temperature (thermal) stability of an enzyme?
- c) Define and also mention the significance of Km, Vmax, and Kcat/Km.

Q 4. Attempt any TWO of the following

(2X7=14)

- a) What is the acid-base catalysis mechanism? How does lysozyme catalyze the reaction?
- b) Briefly discuss the regulatory mechanism of Glutamine synthetase.
- c) What are allosteric enzymes? Discuss different models of allosteric regulation.

O 5. Attempt any TWO of the following.

- a) What are isozymes? Discuss different isoforms of lactate dehydrogenase (LDH).
- b) What are marker enzymes? Discuss any two marker enzymes used in diagnosis.
- c) Define enzyme immobilization? Write about the entrapment and encapsulation methods of enzyme immobilization.